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Abstract 

This paper presents experimental and numerical studies to determine the particle size distributions (PSD) and 

concentrations in paint overspray. Two kinds of paint materials, solvent borne and water borne paints, both with 

and without manufactured nanomaterials (pigments), and an industrial spray gun were used. Different aerosol 

measuring techniques, namely the Spraytec Fraunhofer type particle sizer for micro-sized droplets in the spray jet 

and the Scanning Mobility Particle Sizer (SMPS) for nano particles in paint overspray were applied. It was found, 

that solvent borne clear coats create significantly higher number concentration of nano-sized droplets than the 

water borneprimers. Only small differences in PSD between paints with and without manufactured nanomaterials 

were found. Numerical simulations of droplet trajectories within the spray booth, for both micro and nano sized 

droplets, were carried out. Based on the experimental and numerical results, a representative particle size 

distribution (smaller than 1 μm) for the given spray gun was obtained. Effects of turbulence models on the particle 

deposition on targets, especially for submicron particles, have been analysed in detailed.    
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Introduction 

The increasing application of manufactured nanomaterials (MNMs) in industrial products requires more 

knowledge about environmental and human safety. This is especially true for the spray painting process, which 

produces a high percentage of paint overspray. During the migration of the overspray droplets, solvent continues 

to evaporate, resulting in the formation of non-volatile fractions of paint aerosols that consist of paint matrix and 

the applied MNMs, such as TiO2, ZnO, carbon black, etc. The MNMs could remain embedded in paint matrix 

particles or released from the paint matrix. Thus, the characterization of paint overspray aerosol becomes more 

and more important.  

Information about the estimation of worker nanoparticle exposure to paint overspray is limited and particularly the 

process understanding of nanomaterial release during spray applications. A review of nanoparticle exposure at 

nanotechnology workplaces has been stated by Kuhlbusch et al. [1]. Carlton and Flynn [2] developed an 

empirical-conceptual model based on dimensional analysis, to predict breathing zone concentrations of a paint 

mist during spray painting tasks. Later, they also carried out CFD calculations to simulate production of breathing-

zone concentration of a paint overspray, for a simple case of the spray painting of a flat plate in a cross-flow 

ventilated booth [3]. 

For the risk estimation of exposure to paint overspray, it is also useful to categorize the paint aerosol particles in a 

spray jet, which can provide important information with regard to the worst case for a given spray atomizer and 

the applied paint material. Based on the experimental and numerical studies [4-6], paint droplet injection models 

for different atomizers and corresponding application parameters have been developed, with which the spray 

transfer efficiency TE (amount of paint reaching the work piece) as well as the paint overspray can be well 

predicted. However, these studies considered particle dispersion and deposition mainly for droplets larger than 

1 µm. Study on the generation and characterization of nano- and sub-micro paint aerosols for a given atomizer is 

still quite scarce.  

Recently Göhler and Stintz [7] analysed the airborne particle release from spray guns by sampling small particles 

in a turbulent pipe flow. The results showed that depending upon the material and pray unit used, 5 x10
8
 to 3 x10

8
 

particles were released per gram of paint ejection, of which around 10no% to 60no% were finer than 100 nm. 

These results were later applied to their CFD-modelling of nano particle dispersion for the prediction of worker 

exposure [8]. 
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Concerning to the particle transport in turbulence flows, especially for nano particles, there are many reports [9-

12], in which the effect of different turbulence models, wall treatments and models of turbulent dispersion on 

particles were investigated using CFD tools. In many of such studies, direct numerical simulation (DNS) data of 

channel flows were applied to create damping functions for predicting more accurate particle fluctuation velocity in 

near wall turbulent flow. However, in spray painting applications the spray jet is characterized with turbulent 

impinging jet. There is no available DNS data for such complicated turbulent near wall flow with high Reynolds 

number.      

 

Currently, a joint transnational research project (NanoGeCo) has been set up, focusing on detailed 

characterization of nanoparticles by atomization processes in spray painting. Within this project different stages of 

experimental and numerical studies have been identified. In this stage of the research, determination of particle 

size distributions and concentrations in paint overspray were carried out. Two kinds of paint materials, solvent 

borne and water borne paints, both with and without manufactured nanomaterials (pigments), and an industrial 

spray gun were used. Different aerosol measuring techniques, namely the Spraytec Fraunhofer type particle sizer 

for micro-sized droplets in the spray jet and the Scanning Mobility Particle Sizer (SMPS) for nano particles in paint 

overspray were applied.  

Numerical simulations of droplet trajectories within the spray booth for both micro and nano sized droplets were 

carried out, taking into account, the solvent evaporation in the droplets. Droplet solid fractions in overspray and 

droplet transfer efficiencies on a target were analysed, especially for nano- and submicron droplets. The effects of 

turbulence models on the dispersion and deposition of small sized particles were studied using RANS models 

(Renolds Averaged Navier-Stokes), namely k-and RSM (Reynolds stress model). The simulated number 

concentrations of nano-sized droplets were compared with the measurements, resulting in an improved injection 

model for nano sized droplets. Based on the experimental and numerical results, a representative particle size 

distribution (smaller than 1 μm) for the given spray gun has been obtained, which provides information for further 

investigations, to assess human exposure to nano particles, in a practical paint booth and for toxicological studies 

of atomized nano-particles. 

 

Experimental study 

Paint materials, spray gun and spray booth 

All measurements were carried out in a practically relevant painting booth with a well-defined homogeneous booth 

air velocity of 0.3 m/s. A HVLP-spray gun (High Volume Low Pressure) from SATA was used. A flat plate with size 

of 200 x 800 mm² as droplet deposition target was located horizontally. Painting distance between the gun and 

the target was 180mm. Table 1 shows the application parameters. Table 2 summarizes the properties of used 

paint liquids.  

 

Table 1: Operating parameters    Table 2: Properties of paint materials 

 

 

 

 

 

 

Basically, two-component, solvent borne clear coat and water 

borne paint (primer) were used. Paint materials with and without 

pigments (ZnO and carbon black) were applied in measurements. 

A nanoparticle concentration of approximately 1.5 v/v % 

calculated on solid binder was used, corresponding to the normal 

coating applications. It was found that there were no significant 

effects of pigments or MNM on the listed properties of paint 

liquids and as well as on the rheological behaviours, as shown in 

Fig. 1.  Both liquids shows shear thinning behaviour of viscosity, 

but it is stronger for the primer. However, the apparent viscosity 

of the clear coat is significantly lower than that of the primer. The 

viscosity curves in Fig. 1 can be helpful for understanding the 

measured droplet size distributions shown later. For clear coat 

the solvent is composed mainly of Butyl acetate that was used in 

the droplet trajectory calculation in the numerical study.  

Liquid flow rate  150 [g/min] 

Gun air flow  410 [NL/min] 

Gun pressure  2 [bar] 

Painting distance 180 mm 

Name Density (wet paint)  

kg/m³ 

Density (dry) 

kg/m³ 

Non-volatile 

fraction 

Clear coat  999.2 1160 53.1% 

Primer 999.0 1135 13.3% 

Figure 1. Viscosity measurement (shear curve) of 

the paint materials 
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Micro droplet size measurement in spray jet 

In terms of mass, the spray jet air flow is mainly influenced by micro-sized particles and to a far lesser extent by 

nanoparticles. It is, therefore, necessary to measure micro droplet size distribution in a spray jet, in order to 

correctly model spray jet turbulent flow using CFD tools. Figure 2 shows the droplet size measurement setup 

using a Malvern Spraytec Fraunhofer type particle sizer. A distance of z = 50 mm from the nozzle was chosen 

and the laser beam of the Malvern Spraytec was oriented along the x axis. The spray gun that was mounted on a 

robot was traversed along the major axis y of the elliptical spray cone. A similar approach was applied in our 

previous studies [5, 6]. 

Based on the individual droplet size distributions in the elliptical spray region, the integral distribution of the whole 

spray region was then calculated and shown in Fig. 3. The corresponding Sauter mean diameter D3,2 is 7.11 µm 

for the primer and 6.52 µm for the clear coat. In order to show more clearly the difference in size distributions for 

small particles between the two paint liquids, mean diameter Dv10 (10 percent of particle volume accumulation 

distribution lies below the Dv10, which characterizes the small particle size) along the elliptical spray cone are 

depicted in Fig. 4. Clearly, the clear coat creates somewhat finer particles (Dv10) than the primer. Measurements 

of nanoparticle size distributions created from the paint liquids will be illustrated in the next section.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Nano and submicron particle concentration in spray overspray 

Particle size distribution (PSD) measurements in the nanometre range require on one hand a certain time interval 

scanning from a few nanometres to several hundreds of nanometres including an instrument specific reset time 

(retrace time). Therefore, a varying evaporation speed of droplets in overspray as well as coagulation of droplets 

and further atomization and dilution processes at the same time makes a representative sampling difficult. The 

paint aerosol is sticky, which may make the sensor signal quickly messy during data sampling close to overspray 

with high concentration. With this consideration an experimental arrangement and setup was established, as 

shown in figure 5. Basically, a target plate was used for depositing large paint droplets. Two measuring points 

(L50 cm and S30 cm) were located in the middle of the two plate edges, but far away from the edges and at the 

same level of the plate (H79.5cm). The quasi-static spray jet flow allows subsequent scans during atomization 

Figure 2. Schematic of the droplet size measurement 

setup 

Figure 3. Integral droplet size distributions  

Figure 4. Mean particle size Dv10 distributions along the 

spray cone 
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and facilitates repeatability of measurements. A SMPS (scanning mobility particle sizer) and a CPC (condensation 

particle counter) were applied to measure nanoparticles of paint overspray. The SMPS/CPC was operated in 

“batch” mode. An impactor is used as a pre-filter to limit the measurement range to sub-micron particles and to 

avoid damage due to overflow to the instruments sensitive parts. Cleaning on the impactor had to be carried out 

frequently, in order to obtain accurate results. Parameters such as sheath air flow and scanning time were set to 3 

l/min and 60 seconds.  

Background particle number concentration (PNC) in the spray booth with the booth and gun air flow was always 

measured before each operation of spray gun and is shown in Figs. 6 – 8.  In Fig. 6 results are shown for primer 

and primer with pigments (carbon black). For the water borne paint (Fig. 6) it can be observed that nanoparticle 

concentrations are higher than those of the background for particles with mobility diameter Dp > 200 nm. It can be 

also seen that number distribution for the primer with carbon black is a little bit lower than that of primer.   

Figures 7 to 8 shows results from solvent borne paints (clear coat with and without ZnO) for the measuring 

positions at L = 50 cm and S = 30 cm. The PNC differences between paint aerosols and the background are 

generally small in the 40 nm to 80 nm range. The difference between clear coat with and without ZnO is also 

small. Significant higher PNC can be observed for particles in the range of 100 to 640 nm. The PNC at measuring 

position L=50 cm is higher than that at S = 30 cm, which delivers important information for the nanoparticle 

dispersion for the trajectory modelling in the numerical study. Comparing the two paints, PNCs of primer are 

during the atomization process far lower than those of the solvent borne paints. Primers showed a very “stick 

character” and we assume that these differences are due to the high viscosity of these paints. 

 

 
 

 

 

 
 

 

 

 

Numerical study 

Numerical methods 

The commercial CFD code ANSYS-Fluent 17, based on the finite-volume approach, was used for the numerical 

simulations. The gas phase was modelled using the Eulerian conservation equations of mass, momentum, and 

energy. The three-dimensional compressible airflow was directly simulated from the nozzle using the coupled 

solver, as it was found to be more stable than the segregated solver for this specific airflow calculation. As inlet 

Figure 5. Setup of the spray application and sampling 

position definition. 

Figure 6. Primer particle concentrations at the measuring 

position: L50cm, W0, H79.5cm 

Figure 7. Clear coat particle concentration at the 

measuring position: L50cm, W0, H79.5cm 

Figure 8. Clear coat particle concentration at the 

measuring position: S30cm, H79.5cm 
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boundary conditions, booth air velocity of 0.3 m/s and air mass flow rate and stagnation temperature were used at 

the air nozzles.  

An unstructured mesh with 3.3 million cells was used to discretize the computational domain of 3.5×2.5×2.0 m³, 

including the complicated spray gun geometry. Mesh refinement was carried out. Prism mesh layers on the target 

wall were created with the first layer thickness of 0.5 mm. For this mesh model the turbulence Realizable k- 

model with scalable wall function was applied, since the dimensionless wall distance y
+

 ranges from 1 – 20 on the 

plate.  

It is well known that the particle deposition is strongly influenced by the used near wall turbulence models, 

especially for small size particles. An isotropic turbulent flow is basically assumed in two equation RANS model 

(Reynolds Averaged Navier-Stokes), which results in an over estimation of particle deposition rate if the original 

eddy interaction model (EIM) in common CFD-codes is used [10-12]. In order to model the near-wall anisotropy 

flow using k-models, some modifications [9-10] of EIM have been performed previously by using damping 

functions that were derived using DNS-data of channel flows. However, such approach is not suitable to the 

present complicated turbulent impinging jet. Instead of using damping functions the Reynold-stress turbulence 

model (RSM), which can account for anisotropic turbulence, could be applied to particularly study dispersion and 

deposition of quite small particles. However, the RSM is quite sensitive to the grid quality. The present simulations 

with RSM using tetrahedral mesh near the atomizer resulted in an unrealistic spray jet. For this reason a 

computational domain with hexahedral meshes but without atomizer was used to study the near wall nanoparticle 

deposition and dispersion. The obtained air flow and the particle trajectories in the near-atomizer region based on 

the k-model were exported then for the inlet conditions in the hexahedral mesh model. Reasonable results 

could be obtained, as shown later.    

 

Droplet trajectories were calculated using the Lagrangian particle tracking method (LPT) by integration of the 

equation of motion, 

p    ,  )p(
p

u
x

FFuu
u


dt

d
LGD

f
dt

d
, 

in which the drag force )p( uu 
D

f and the gravity force GF (force/unit particle mass) are dominant forces for 

large droplets. For nano- and sub-micro droplets the Saffman’s lift force LF  and the Stokes-Cunningham drag 

laws were taken into account. The stochastic tracking model with random walk and eddy lifetime was applied to 

calculate the instantaneous air velocity u . For k-model the fluctuating velocity component is equal to (2k/3)
1/2

 (k 

is turbulent kinetic energy), whereas anisotropy fluctuating components: (uu)
1/2

, (vv)
 1/2

 and (ww)
 1/2

 can be 

obtained using RSM. The other important issue for modelling the turbulence dispersion on the droplet motion is 

the determination of integral time scale constant that is used for calculation of the particle-eddy interaction time in 

the EIM,   

   


k

L
C

L
T   

In Fluent the integral time scale constant CL is 0.15 by default, which can be modified for the trajectory calculation 

of small particles as suggested in previous works [9, 16]. A Larger value CL = 0.8 was used in current study, in 

order to achieve better agreement with experimental results of the nanoparticle dispersion. The corresponding 

effect of CL is shown in the following section.  

Droplet size distributions shown in Fig. 3 were used to create injection data for the trajectory calculation of micro-

sized particles. The injection position was located quite close to the atomizer. The initial droplet injection velocities 

were fitted by using the information from the gas flow field and by matching the film thickness distribution on the 

flat plate. The detailed approach for creating injection data can be referred to in our previous studies [5, 6]. Water 

and Butyl acetate were used as solvents in calculation of droplet evaporation for the water borne coat and the 

clear coat respectively. Species transports in gas phase, such as air- Butyl acetate and air-water-steam, have 

been performed. Raoult's law was used to calculate the pressure equilibrium at the gas/liquid interface. Detailed 

physical models are shown in reports [14,15]. Two phase coupling was taken into account. 

Static film thickness distribution, namely the film growth rate [µm/s] on the target can be obtained after particle 

trajectory calculation. The spray gun is static in the present numerical simulation, hence in order to compare with 

the measured dynamic film thickness distribution, the simulated static film pattern has to be integrated, taking into 

consideration the robot velocity, the wet as well as the dry density of the paint material. Finally, the simulated two 

phase bulk flow field was applied to study the dispersion/deposition of nano- and sub-micro particles.   
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Simulation results 

Trajectory calculation for spray jet using micro-meter sized particles 

At first, air flow using k- turbulence model and trajectory calculations using micro-sized particles were carried 

out. Figure 9 shows the air velocity close to the atomizer. High velocities about 370 m/s, can be observed at the 

air nozzles. Droplets were injected in a circular region with a radius of 2 mm, 5 mm downstream the liquid nozzle 

and above the cross-section of the shaping air flow jets. The flat spray jet, as shown in Fig. 10, was created 

because of the shaping air flow jets. To provide a sensible resolution of the entire flow field, the velocity contours 

are depicted in the range of 0 - 30 m/s in Fig. 10. A quite narrow elliptic flow region is formed with a narrow 

extension along z, which results in a narrow elliptic film pattern on the plate (the so-called static film thickness 

distribution or static film growth rate [µm/s]). The calculated dynamic dry film thickness profile was compared with 

the experimental result that was measured by means of magneto-inductive method. A good agreement between 

measured and predicted film thickness was obtained (Fig. 11). Except the film thickness distribution, non-volatile 

fractions in droplets for both paint liquids were also analysed. As shown in Fig. 12, solvents were fully evaporated 

for droplets with diameter smaller than 1 µm, which delivers important information for the nanoparticle sampling 

measurement. A re-condensation in paint overspray can be well neglected, since the solvent concentration far 

away from the spray jet is quite low and the process temperature is constant. The validated numerical simulation 

results in this section provide the reasonable flow field of spray jet for the further study of dispersion/deposition of 

nanoparticles.    

 

 

 

 

 

 

       

 

 

 

 

 

 

 

 

 
 

 

 

 

Trajectory calculation with consideration of nanoparticles 

As mentioned above, a computational domain (3.5×0.22×2.0 m³) with a hexahedral mesh model without atomizer 

was used so that simulations of turbulent flow with RSM could be carried out without any difficulty. In order to 

study effects of turbulence models on particle deposition, simulation with the k-model was also performed. The 

air flow field and particle trajectory information downstream from the liquid nozzle in Fig. 10, namely at the cross-

section of y = 15 mm, were used as inlet conditions for the current computational domain. The obtained spray jet 

flow field using RSM (Fig. 13) was compared with that in Fig. 10, which ensured the similar spray jet flow field due 

to the interpolation of inlet boundary conditions.  

Figure 9. Velocity contours near the atomizer 
Figure 10. Calculated velocity contours colored by velocity magnitude 

[m/s] in the plane z = 0. The static film thickness distribution on the plate 

is also overlaid. 

Injection 

position 

Figure 11. Comparison of measured and calculated dynamic film 

thickness distributions for clear coat 

Figure 12. Comparison of solid (non-volatile) fraction in 

droplets on the target plate 
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For the analysis of simulation results, more attention was paid 

to the turbulent near wall flow on the spray target. 

Distributions of turbulent kinetic energy k and the normal 

turbulent fluctuation v’² in cells adjacent to the wall along the 

centre line of the spray pattern were depicted in Fig. 14. The 

differences between RSM and k- model in the spray pattern 

centre are quite small, but higher k and the normal turbulent 

fluctuation can be observed at x = ± 0.15 m for the results 

using the k- model. However, it is interesting to examine the 

mean normal velocity component close to the wall. Figure 15 

shows negative Uy component in wall cells by using RSM, 

whereas almost positive values with k- model. The negative 

Uy, in wall cells, that is in line with the spray jet direction will 

enhance the particle deposition.  

Particle trajectory calculations were then carried out first using micro-sized particles (Fig. 3) to study the effect of 

turbulence model on particle deposition rate. The corresponding transfer efficiency TE = 64% for RSM and 63% 

for k- model were obtained. 

The effect of CL on particle dispersion/deposition in EIM with RSM was also studied using CL = 0.15 and CL = 0.8. 

It was found that the influence of CL is quite small for high-inertia particles, i.e. large particles. However, the effect 

of CL for small particles cannot be neglected. Figure 16 shows sample trajectories of 0.5 µm particle by using 

RSM and two values of CL. With CL = 0.15 most of particles stream along the long axis of the elliptic spray pattern 

and away from two sides of the wall, which results in a quite dilute particle concentration in the direction of the 

short axis of the target. In contrast, a higher nanoparticle concentration was measured in the direction of the short 

target axis (Fig. 7) than that at the longer axis (Fig.8). The particle dispersion with CL = 0.8 in Fig. 16 shows 

similar trend as the experiment and is therefore considered to be reasonable. The TE with CL = 0.15 is 30% and 

40% with CL = 0.8 in Fig.16. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Finally, the total nanoparticle distribution for the given operation conditions was fitted by means of the measured 

aerosol concentrations. The simulated concentrations of small paint aerosol particles were compared with the 

experiment at the sampling position (L50cm, W0, H79.5 cm) and shown in Fig. 17.  In the figure, the experimental 

data was converted to obtain non-normalized particle concentrations, to be able to compare with those obtained 

from numerical simulations. For the simplification the particle distributions were regrouped and the background 

Figure 14. Turbulent kinetic energy and normal fluctuation 

v’² in the wall cell  

Figure 15. Normal velocity component Uy in the wall cell  

Figure 16. Trajectories of 0.5 µm particles, left CL = 0.15, right CL = 0.8 

Figure 13. Calculated velocity contours colored by velocity 

magnitude [m/s] in the cross-section z = 0 with hexahedral 

mesh model without atomizer. The static film thickness 

distribution on the plate is also overlaid. 
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concentration was subtracted from the measured concentration. Based on the current experimental and numerical 

simulation results, the total number of nano and sub-micro particles in the range of diameter from 20 – 550 nm 

from the given spray gun is obtained, which is 1.56x10
7
 per gram of paint ejection for water borne paint and 

5.2x10
8
 for clear coat. The results deliver important information for the further investigation of worker exposure to 

paint overspray. 

 

Conclusions 

Experimental and numerical studies of the determination of 

particle size distributions and concentrations in paint overspray 

created by a handcraft spray gun have been carried out. Although 

the droplet Sauter mean diameter obtained by micro particle size 

measurement is quite similar between two different paint 

materials, it was found that the solvent borne paint (clear coat) 

creates significantly higher number concentration of nano-sized 

droplets than the water borne paint. The relative low viscosity and 

strong solvent evaporation of clear coat could be the reason for 

the resulting atomisation behaviour. There were no significant 

differences of nano droplet concentrations between paints with 

and without manufactured nanomaterials, especially for the clear 

coat.  

Numerical simulations of droplet trajectories in spray booth both for micro and nano-sized droplets were carried 

out. The simulated two phase bulk flow field of a spay jet was validated by using measured film thickness 

distribution on the target. Particle dispersion and deposition for small-sized particles in turbulent near wall flow 

were then studied using two different turbulence models. The effect of turbulent time constant in the standard EIM 

in LPT was analysed. It was found that the default small value of CL yields unrealistic predictions for the sub-micro 

particle dispersion. Higher CL and RSM for near wall turbulent flow calculation were applied, which results in 

higher small-sized particle deposition than that using k-model and standard EIM. Finally, representative nano 

and sub-micro particle distributions for a given spray gun were obtained based on the measured particle 

concentration in paint overspray, which delivers useful information for the further investigations of human 

exposure to a paint overspray in a practical paint booth and toxicological studies for evaluating the corresponding 

potential risk. 
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